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J .  PHYS.  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2, V O L .  2. PRINTED I N  G R E A T  BRITAIN 

The double-series approximation method in general relativity 
I. Exact solution of the (24) approximation 
11. Discussion of 'wave tails' in the (2s) approximation 

A. J. HUNTER? and M. A. ROTENBERGS 
t Queen Elizabeth College, University of London 
.$ Southwestern at Memphis, Memphis, Tennessee, U.S.A. 
MS. received 27th May 1968 

Abstract. In 1966 Bonnor and Rotenberg used the double-series approximation 
method, in conjunction with the Bondi metric, to study gravitational radiation from an 
isolated cohesive axisymmetric source vibrating smoothly during a finite interval 
u1 < U < uz (U = retarded time t - r ) .  In part I of this paper a complete solution, 
clearly convergent for Y > 0 and all U ,  is given of the (24) approximation step of 
Bonnor and Rotenberg's work. The quadrupole-quadrupole interaction is shown 
to satisfy Huygens' principle, but the m0nopole-2~-pole interaction gives rise to 
'wave tails'. 

In part I1 it is shown that, for U > uZ (end of the source vibration), the 'wave 
tails' resulting from the mon0pole-2~-pole contribution of the (2s) approximation 
(s b 2) represent incoming 2"pole radiation, at any rate for s = 2, 3, 4. This con- 
firms a result by Couch et al. 

PART I 
1. Introduction 

Bonnor and Rotenberg (1966, to be referred to as BR) were able to prove a now familiar 
result concerning the permanent loss of mass of an isolated oscillating cohesive system by 
gravitational radiation, Considering any axisymmetric source they used a metric due to 
Bondi (1960) and a method of approximation (called the 'double-series expansion method') 
in which the two parameters m and a, characterizing the mass and the dimension of the 
system, were employed (Bonnor 1959). T o  assist the reader, the method of approximation 
with the relevant notation are explained in $ 2  and 'appendix 1, although some previous 
knowledge of BR is assumed. 

The  physically interesting (24) approximation (see BR), that is the lowest one which 
shows the secular loss of mass, was solved by Bonnor and Rotenberg only up to Y - ~  ( I ,  6 , C  
are the spherical polar coordinates of the field point P). Thus it was not apparent that the 
solution of the (24) approximation would be convergent as U (the retarded time t - I )  
became large. Also it was not possible to see if there were any permanent changes in terms of 
order r-n (n  > 2). However, an indication of how the total solution of this (24) approxima- 
tion might be obtained was given. It was conjectured that the solution would be similar to 
those of the (22) and (23) approximations, which, although of little physical interest, were 
solved exactly by Bonnor and Rotenberg (see Rotenberg 1964, $ 4.7, BR, 4 11). 

T o  solve the (22) and (23) approximations Bonnor and Rotenberg expressed gik  as a 
power series in Y - I ,  i.e. 

(2s)  

1 

n (22)  where 6 (6, U )  are bounded functions, up to a certain power I -  (for gik,  I = 3). They then 
completed the solution by addition of integrals of the type 

$ ( I ,  U )  = w-"i(u+2r -2w) dw, 1% 2 2;  
J C C  

34 
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h(u), independent of m and a, is defined in terms of the ZS-pole moment Q(u) about the 
axis of symmetry Ox by 

S S 

S S 

$)(U) = mash(u),  s > 0 (1.3) 

1bn)(u) = 0, n 2 1, whenu 6 ul, U > u2. (1.4) 

and is assumed to possess derivatives of all orders for all U, so that 
S 

n 
The integrals T ,  although convergent in U after the end of the vibration of the source, 

do not become static immediately at this time and are called 'wave tails'. 
In  part I of this paper we have solved the (24) approximation completely. The  quadru- 

pole-quadrupole part of the approximation has been solved in § 3 without the use of tail 
terms; and, if the source returns to its original position at the end of its vibration, there are 
solutions in which there are no permanent changes in any of the terms except those of 
order r - l .  These are the terms which refer to the loss of mass from the source, and have 
been discussed in BR. The other part of the approximation, due to the m0nopole-2~-pole 
interaction, has been solved in 4 with the use of tail terms. The non-uniqueness of the 
solution of the (24) approximation is discussed in 9 5. 

The main results of part I of this paper are that there exist solutions of the (24) approx- 
imation which are not dicergent in U (this adds weight to the method of approximation used 
in BR) and that the quadrupole-quadrupole interaction does not yield tail terms in Bondi 
coordinates. The first result contrasts with the work of Couch et al. (to be published), who 
in solving the (24) approximation by a different method obtained terms which diverge 
as U + CO. They suggest that their time-divergent solution is consistent with the idea that 
the emission of radiation is accompanied by an explosion of the source. 

2. The (24) approximation 
The metric tensor is expanded in a doubly-infinite power series in m and a :  

p = 1  s = o  

where !:;(p, s = 0,  1, 2, ...) are independent of m and a. For the coefficients of the Bondi 
metric 

C = B- l  (2.2) ds2 = -r2(B de2 + C sin2 0 d+2) + D du2 + 2 F  dr du +2rG dB du, 

m w  

-g33 = r2 sin2 BC = y2 sin2 e (I + 2 mPasC 
p = l  s = o  

( P S )  m w  

g 4 4  = D = I +  2 mPaSD i. 
I p = l  s = o  

I p = 1  s = o  

p = 1  s = o  
I 

( P S )  ( P S I  
B, ..., G and B, . . ., G being functions of T ,  8, U only. If we substitute (2.3) into the 
field equations 

Rik = 0 (2.4) 
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we can separate out the coefficients of t a p a s ,  and if we equate these to zero we obtain a 
doubly-infinite series of sets of second-order differential equations. The  set which is the 
coefficient of mpas is called the (ps)  approximation. Any (1s) approximation is linear and 

homogeneous in the i:L (and their derivatives) and it is here we insert the 6. For p 2, 
the (ps) approximations are non-linear. 

If we substitute (2.3) into the field equations and pick out the coefficient of mpaS from 
each equation as described above, we find seven equations of the form 

the left-hand sides are linear in 2;; (and their derivatives) and the right-hand sides are 
non-linear in zz; (and their derivatives) which are known from previous approximation 
steps. The  explicit forms of the left-hand sides of (2.5) are given in appendix 1, where 
also a formal solution of the (ps)  approximation is found. The  non-linear terms of these 
equations (2.5) are denoted by H ,  I ,  J ,  K,  L, N ,  P. 

With regard to the (24) approximation, the terms on the right-hand sides of (2.5) 
come from the following combinations 

( l r )  (11) of the gik and their derivatives. The  second combination is zero since g { k  = 0. We shall 
find it convenient to solve the (24) approximation in two parts: firstly, the solution due 
to the quadrupole-quadrupole interaction ( g i k  x g z k )  and, secondly, the solution due to the 
m0nopole-2~-pole interaction (gi, x gik).  We denote any function referring specifically to 
the quadrupole-quadrupole approximation or the m0nopole-2~-pole approximation by the 
label q or p ,  respectively, inscribed below the letter representing the function. 

3. The quadrupole-quadrupole approximation 

(12) (12) 

(10) (14) 

(24) 

4 
Using H given in table 1 of appendix 1 we have from (A8) 

(24) 2 22  2 

(3.1) F = sin4 e( -.L-y-2h”2 -&y-4hhf’ - 2 - y - 6 J  2 

4 
32 3 2  1 ) 

(24) (24) where the function 17 (6, U) of integration has been put equal to zero so that g i k  shall take 
Galilean values at spitial infinity. The  right-hand side of the pseudo wave eguation (A10) 
is now calculated by using (3.1) and the values of K ,  N given in table 1 of appendix 1 ; we 
obtain 

(24) (24)  

4 4  

(24) (24) 2 2 2  2 2 2  2 2  
c]’D = {~-2 (2~~+~2~h~/ ’2 )+~~~-4(h ’h ’~ ’+h~’2 )+~-55(hh’ / ’  - /3h’J”  1 5  a )  

4 4 
2 2  2 2 2  2 

+ y - 6 (  -2hh” -4h‘Z) -Z56y-7hh’ -3y-81~2) 

2 2  2 2  2 + pz{ -i$.y - 2$2 + L7Zr - 3h”h’f’ + y - 4(+&’h” + aoh”2) 

+p,{-,2jY-2;”2 -+-3 h 2 2  ’I h ’I’ - y -  4(3k%i’i//’ + 23,55h”2) 2 

2 1  

2 2  2 2  2 2 2  +y-”+L?hh”’+.”,$,’h’’) 21 -L7By-6h’2 -zr-7hh‘} 

2 2  2 2  2 2  2 
+ y - 5 (  -2,Zhh” -2,S3h’h”)+ y - 6 (  -$5hh”+L$Ch’2) 

2 2  2 + B55r -7hh’ + 6r -8h2} 
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where P, = P,(cos 0) are the Legendre polynomials. A solution of (3.2) is found to be 

D = {iLLy-ly+.Z.r- 1 5  1 5  ,“,j - 6h2} 
(24) (24) 2 2  2 2  2 2 2  2 

3 h ” ” + r - 4 ( i L h h ”  -_Z .h’2 )  -lr-5hh’ - . - r  
4 

2 2 2  2 2  2 +P,{ -$r-lR.;t“ -+ r -2h“2+  ~ ~ l r - 3 ~ ” 4 ( ~ ~ ~ ”  - 2 1  2_h’2) --y ; -5;;’) 
2 2  2 2  2 2  2 2 2  

+ p4{r - l( ’hIV -ggh”h’”) + y - 2( -2h ’h” - L72h”2) -yo+ - 3 h ’ h ”  

2 2  2 2 2  
+ y - 4 (  -ZZhh“ 7 0  -&93)‘2) 1 4 0  - & l y - 5 h h ‘ + $ r - 6  7 0  0 R }  2 

in which 
(24) def 
Y = 1 du. 

- m  
This solution corresponds to the choice 

(24) (24) 2 2  (24) 2 2  2 2  

(3.5) = & y + p 2( 1 2  “ h “‘ +&y)+p4( -%h‘hIV -L#h”h” -&(pj 
4 

(24) for the function of integration, x (e ,  U) made such that the solution is convergent as U -f CO, 

that is, such that D does not diverge for U % u2 (the end of the vibration of the source), 
This choice of x, and consequently the solution of the (24) approximation, are not unique 
and will be d i s c k e d  in $5 .  

(24) 4 

(24) 4 

(24) (24)  (24) 

4 4 4  
We are now able to calculate B,  C, G with the use of (Al l ) ,  (,412), (3.1)) (3.3)) (3.5), 

table 1 of appendix 1 and the second part of (2.2)) the latter yielding 

(24) (24) (12) c =  -B+B2 
4 4 

(12) 
where B is given by the first part of (A19) (s = 2). The  corresponding complete solution, 
for all U, of the quadrupole-quadrupole approximation turns out to be 

(24) 
+ ( -&s2 --&5s4)Y} 9 4 I’ 2NI 

(24) 2 2  
B = y-1{(&-s2 -&s4)h’h1V+ ($s2 ->-,js )h 
4 
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+ Y -e (  -$sc + y s 3 C ) h 2  (3.11) 

in which s = sin 8, c = cos 8;  this solution corresponds to the choice (3.5) for x . The 
functions Y (Y, U), 7 (r ,  U ) ,  ,LL (8, U) of integration have been chosen zero, since only 
without them will the solutio; be Galilean at spatial infinity and satisfy the regularity 
conditions (A13) along the rotation axis Ox. 

We have now a solution of the (24) quadrupole-quadrupole approximation which does not 
contain tail terms. The interesting terms of the solution (3.7) to (3.11) are of order r - l ;  these 
have been shown by Bonnor and Rotenberg in BR to refer to a secular loss of mass from the 
source. From (1,4), the only other non-transient terms in this solution are of order Y - ~ ;  
for U < u1 or U > u2 they form a solution for the (Weyl) static, axisymmetric field due to 
the static terms of the quadrupole-quadrupole interaction-given by (Al)  to (A7) and table 1 
of appendix 1 without the terms involving time derivatives. Thus, if the source returns to 
its original position at the end of its vibration, the only permanent changes in gi, will be of 
order r - l :  the other non-transient terms, of order Y - ~ ,  remain constant at their original 
values, constituting in fact the quadrupole-quadrupole part of the static, axisymmetric 
field. 

(24)  

(24)  ( 2 4 )  ( 2 4 )  . q  

a (i 

(2 4) 

a 

4. The m0nopole-2~-pole approximation 
( 2 4 )  

21 
In  table 2 of appendix 1, H = 0, and so we have from (A8) 

( 2 4 )  (24) putting the function 7 (8, U) of integration zero to make g,, Galilean at spatial infinity. 
The right-hand side of the pseudo wave equation (-410) is evaluated with the use of (4.1) 
and the values of K,  N in table 2 of appendix 1 ; we obtain 

P P 

(24)  (24)  

P P  
(24) 4 4 4 4 

U’D P = P ~ ( C O S  8)( - y ~ - ~ h “  - 2 4 ~ - ~ h ’  -30~-*h)  (4.2) 
( 2 4 )  

setting the function x(0, U) of integration zero, since it is not required to remove unwanted 
singularities. P 

We look for a solution of the form 

4 6 4 (24) 
D = P4( 2 Y-”:(U)+ 2 ;rn-./‘ ~ - ~ h ( u + 2 r  -2w)dw 

n = 3  n = 2  W 
(4.3) 

where !(U) are bounded functions and 21 constants. By equating coefficients we find 
directly 

(24) D = p4( -.I- -3h” 4 -2Ltr-4h” 4 -23s -5h’ 4 - - ~ ~ r - 6 h + i ~ 6 r - 3 T + B y - 4 T + y - 5 T )  4 4 3 2 (4.4) 
Z S T  4 2  QY 

P 
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n 

where the T have been introduced from (1.2) with s = 4, i.e. where 

4 ?"'/' ~ - ~ h ( u + 2 ~ - 2 w ) d w ,  n 2. 
m 

39 

(4.5) 

Using (All), (A12), (4.1), (4.4), table 2 of appendix 1 and the second part of (2.2), the 

(4.6) 

latter giving 
(24)  (24) 
C = - B  
P P 

( 2 4 )  (24) (24)  
and setting the functions V(Y, U), T ( Y ,  U), p(0, U) of integration equal to zero we are able to 

calculate B, C, G, thus having a total solution of the m0nopole-2~-pole approximation, 
Galilean at spatial infinity and non-singular for Y > 0 (i.e. satisfying (Al3)): 

(24)  (24) ( 2 4 )  P P P 

P P P  

I 

(24) 

P 
F = O  

Because of the appearance of the tail terms (4.5) in it, the above solution does not be- 
come static immediately after the end of the vibration of the source (U = u2), but only as 
U + CO (Y > 0). This is in contrast to the quadrupole-quadrupole solution, which be- 
comes static immediately after the end of the vibration. 

The  solution (4.7) can be somewhat simplified in the following manner. Introduce a 
new 'wave-tail' function 

9 Q 

S 

with h defined in (1.3). Then if we rewrite (1.2) as 

with the help of the substitution 2w = U + 2r - E ,  it can readily be seen that 

(4.10) 
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Substitution of this relation (with s = 4) into (4.7) gives 

(24) 
F = O  
P 

P L 

as can be verified by a straightforward calculation. In  part I1 of the paper, this simpler 
form of the (24) m0nopole-2~-pole solution is derived more directly (see tj 8). 

5. The non-uniqueness of the (24) solution 
T o  the solution of the (24) approximation may be added any complementary solution, 

that is, any solution of the homogeneous field equations with the non-linear terms H ,  I ,  J ,  
K ,  L,  N ,  P zero. Such solutions are just the (1s) solutions and they have been shown not to 
alter the non-transient coefficients of Y - I  and Y - ~  in higher approximations (see BR, § 9), 
but they may affect the non-transient coefficients of higher-order terms (in rWn,  n > 3). 
We offer a solution of the quadrupole-quadrupole approximation which has no non- 
transient terms of order Y - ~  (. > Z), except those of order Y - ~ ,  which refer to the static, 
axisymmetric quadrupole-quadrupole field. 

In  the case of the m0nopole-2~-pole approximation it is not necessary to use the 

function x(0, U) of integration to avoid singularities, but one can see that if it were to be 
used, it would be equivalent to the introduction of a multipole field. This is ruled out by the 
understanding that all such fields are introduced in the (Is) approximations (BR, tj 5). 
Incidentally, it should be noted that, even if a complementary solution were to be added, it 
would in no way affect the interesting part of the solution, that is the ‘wave tails’. 

On return then to the quadrupole-quadrupole case, it is now apparent that by using the 
function x(0 ,  U )  of integration to avoid singularities we have had to introduce some kind 
of multipole field by analogy with the m0nopole-2~-pole approximation. This multipole 
field is not unique. At this moment we are unable to see any way of restricting the solution. 

I t  seems that prescription of the Q(u) given by (1.3) (together with initial data onu = const., 
regularity conditions on the rotation axis and the outgoing radiation condition) is 
not sufficient to determine a unique solution of the non-linear approximation. 

PART I1 
6. Introduction 

In  a paper by Couch et al. (to be published) it has been shown that gravitational waves 
from an isolated cohesive source vibrating for a finite period of time produce, in the second 

(24)  

P 

(24 )  

a 

s 
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approximation, incoming waves imploding at the source. These incoming waves, repre- 
sented by 'wave tail' integral functions occurring in the second-order mass-multipole wave 
interaction, are interpreted by Couch et al. as a back-scattering, or reflection, of the outgoing 
waves by the curvature of the Schwarzschild space due to the mass of the source. The  aim 
of part I1 of the paper is to confirm this result by showing that the 'wave tails' appear in the 
solutions of the (2s) monopole-2s-pole approximations (s 2 2) which, after the end of the 
vibration of the source, represent incoming 2"pole radiation of order m2as, at least 
fors  = 2, 3,4.  

The  advanced 2S-pole wave solution (s > 2) of the linear approximation is derived in 9 7 
for the retarded Bondi metric (2.2); and for obtaining the main result of part I1 of the paper, 
the contributions in the (2s) solutions (s = 2, 3, 4) by 'wave-tail' integrals are compared with 
the form of this 2S-pole wave solution. 

7. An advanced solution of the linear approximation for an axisymmetric source 
The solution of the linear approximation of the field equations (2.4)) Galilean at spatial 

infinity, depends on the inhomogeneous pseudo wave equations 

(1s) (1s) (see (AS) and (A10); (AS) gives F = 0 with 7 = 0). Since solutions of these equations which 
do not vanish at spatial infinity are rejected, it is easy to verify that there are no admissible 

time-dependent retarded solutions of (7.1) with ~ ( 0 ,  U) = 0: that is admissible solutions 
of the form 

(1s) 

n (1 S )  

where S(u) are bounded functions, do not exist in the case x = 0. 
T o  overcome this difficulty the functions x(0, U) are used (as in BR). These generating 

functions bear some resemblance to Bondi's 'news function' (introduced in Bondi et al. 
1962) and, like the latter, represent the capacity of the system to radiate. It so turns out, 
however, that there exist admissible solutions of (7.1) which represent incoming radiation and 
which do not depend on the generating functions (y.' As functions of the advanced time 
cd = U + 2r, these advanced solutions can be obtained in the following way. 

(IS) 

Let us write 
D = P,(COS O ) [ Y ~ ~ ~ - ~ { T - ~ - ~ A ( Y ,  U)}], s 2 2 (7.3) 

n ' D  = Ps[~s-16s-1(~-s-2(Al -2A4)}]. (7.4) 

" D  = 0 (7.5) 

A1 -2A4 = 0 (7.6) 

A = f (u+2r ) .  (7.7) 

where a = 2 1 8 ~ .  Then, as shown in appendix 2, 

Hence 

is satisfied if 

i.e. if 

Thus 
(1s) 
D = PS[."S-2(r-S-3~(u+2r)}], s > 2 (7.8) 
S 

are solutions of (7.5)) and if f(v) together with their derivatives exist and are bounded for 
all cu, these advanced solutions vanish at spatial infinity. 
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The complete advanced solution of the (1s) approximation corresponding to (7.8) can 
now be calculated by means of (All)  and (A12). Having all the functions of integration 
zero we find for s 2 

where for any integer s 

ss = Ps,22  -ps,2 cot 8 = -2Ps,2 cot 8 -s(s + l)Ps = 2PSJ, + s(s+ l)Ps 1. (7.10) 

In  appendix 3 it is established that (7.9) is the advanced 2S-pole wave solution (constructed 
from the energy tensor TiJ for an axisymmetric source possessing sth moment 

(7.11) 

8. ‘Wave tails’ in the (2s) approximation representing incoming radiation of order 
m2as 
‘Wave tails’ have arisen in the solution of the (22), (23) and (24) approximation steps; 

they result from the monopole-quadrupole, monopole-octupole and monopole-Z4-pole 
interactions (Rotenberg 1964, BR, 5 4 of this paper). That such tails stem from all the 
monopole-2s-pole interactions (s 2 2) has not been shown but is plausib1e.t In  the case 
of the monopole-quadrupole, monopole-octupole, monopole-Z4-pole interactions and, 
possibly, all the monopole-ZS-pole interactions (s 2 2), ‘wave tails’ appear in the process of 
solving the pseudo wave equation 

(2s) S 

E’D = ~ , ( c ~ s e ) r - ~ - 4 q ~ ) ,  B 2. (8.1) 

To  solve this equation we make the substitution of the form (7.3). The  result is 
(appendix 2) 

( -1)9(s+3)! 1’ h( t )  d t  
A =  +$(U + 2Y) 

(2s+2)! - m  (U+% - 0 2  

S 
where $ ( u + ~ Y )  is a function of integration. It suits the purposes of this section if we 

introduce H from (4.8) and write 
S 

~, 

( -1)S(s+3)! 
(2s + 2)! 

A =  ( r  - 1; + i) 
S 

omitting the function I+!J of integration, whose retention would amount to the introduction 
f A question that deserves study is whether ‘wave tails’ exist in the solutions of approximation 

steps due to other types of interaction, and in solutions of higher approximations. For, in 3 3, it has 
been established that they do not occur in the solution of the (24) quadrupole-quadrupole approxima- 
tion, and it turns out that the same applies to the (25) quadrupole-octupole approximation. 
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of an arbitrary 2S-pole wave field (see (7.7)) in the non-linear, (2s), approximation, which 
must be ruled out.? 

Let us now consider the specific example of the (24) m0nopole-2~-pole approximation. 
Suppose that we try to solve the corresponding pseudo-wave equation (4.2) by a power 
series in Y-I of the form 

1 (24) 

P 
D = p 4 ( c o S  e )  2 r-nt?(U) (8.4) 

n = l  
n 

where S ( U )  are bounded functions. Then we shall find a partial solution 

which satisfies 

4 4 4 
( 8 - 5 )  

(8.6) 

D = p ( -.l.y-3h"' - - - I .~ -4h"  20 -289y-5h' 4 2  0 -L,Zr-6i) 4 28 

4 4 4 4 n'D = P4( -$y-4hIV -65r-6h" -24r-7h' -L2Qr-8h 
7 > *  

This leaves us to solve 

4 (8.7) O'D = -Up y -  
7 4  

if we require a complete solution of (4.2). From (7.3) and (8.3), a solution of (8.7) is 
4 4  D = p 4 r 4 a 2 ( r - 7 A ) ,  A = --'-( 5 6  y - ' h+H) .  (8.8) 

A complete solution of (4.2) now may be written as 

The  corresponding complete solution of the m0nopole-2~-pole approximation, found with 
the help of (Al l )  and (A12), is (4.11), derived in 5 4 somewhat more indirectly. 

After the end of the vibration of the source (U > u2) (4.11) becomes, by virtue of (1.4), 

(24) 

P 
F = O  

4 
The  terms involving h on the right of (8.10) constitute a solution for the (Weyl) static, 
axisymmetric field due to the static terms of the m0nopole-2~-pole interaction, given by 
(Al) to (A7) and table 2 of appendix 1 with omission of terms containing time derivatives. 

Considering the remaining terms on the right of (&lo), involving H ,  we note that 
4 

S s S 
HI -2H4 = 2r-lh' = 0 (8.11) 

for U > u2, by virtue of (1.4) ; hence H is a function of U + 2r after the end of the vibration 

of the source. Thus comparing the terms involving H on the right of (8.10) with the right 
of (7.9) (s = 4) and using the second part of (7.11) we see that after the end of the vibration the 

t Couch et  al. (to be published) use this function I/J in an example which is interesting but 
unphysical. 

S 

4 

s 
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'wave tail' of the (24) mon0pole-2~-pole approximation represents an incoming z4-p0le wave Feld 

whose moment is m2a4H. In  a similar manner it can be proved that after the end of the 
vibration the 'wave tails' of the (22) and (23 )  approximations (the monopole-quadrupole and 
monopole-octupole approximations) represent incoming quadrupole and octupole wave fields 
whose moments are m2a2H and na2a3H, respectively. 

These results suggest that after the end of the vibration of the source the 'wave tails' of all the 
(2s) mon0pole-2~-pole approximations ( s  2 2)  may represent incoming ZS-pole wave fields 
whose moments are m2asH. In  conclusion, we note that in making this interpretation of the tail 
terms we have had to compare solutions of non-linear approximation steps with the solution 
of the linear approximation step ; the 'wave tails' represented in this way are solutions only in 
a part of the space-time. 
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Appendix 1. The field equations corresponding to the Bondi metric and their 

The (ps)  approximation, obtained by putting zero the coefficient of mpas in the expansion 
resulting from insertion of (2.3) in the left of (2.4), is written out below. All the capital 
letters should strictly hazte the labels (ps)  inscribed above them. However, to save printing, 
these labels have been omitted throughout this appendix. 

solution 

2R11 -4r-'F, -H 0 (-41) 
2r-2R22 B,, -2B,4+2r-1(B1 -B4+D1 -F,  -G12) 

+Y-'( -B22 -3B2cot 8 + 2 B + 2 0  
+2F22 -4F -4G2 -2G cot 8) -I = 0 (-42) 

2r-2cosec28R133 = -B,,+2B,4+2r-1( -B,+B,+D, -F,  -G, cot 8) 
+Y-'( -Bzz -3B2cot8+2B+2D 
+ 2FZ cot 8 -4F -2G2 -4G cot 8) - J = 0 

- ~ - ~ ( 0 2 2  + 0 2  cot 8) -K = 0 

+ Z P - ~ (  -F,+G) -L = 0 

+ Y - ~ (  -FZ2 -F2cot8+G2+GcotO)  -N = 0 

+Flz+F24 -2Gl -G4) -P = 0. 

(A3 ) 

(A4) 

(A5 ) 

(A6) 

(A71 

2R44 -D1, + 2F14 + 2 r - I (  -0, -D4 + 2F4 + GZ4 + G4 cot 8) 

2r-'R12 -G1l+r-'( -BIZ -2B1 cot 8+F,2 -2G1) 

2Rl4 3 -Dll +2F14 +Y-'( -20 ,  + G12 + G1 cot 8) 

Zr-'RZ4 -GI, + G14 +Y-'( -B24 -2B4 cot 8 - 0 1 2  

rn  the above a subscript 1, 2 or 4 after B, D, F,  G denotes differentiation with respect to 
Y, 8 or U, respectively. (This notation is to apply elsewhere in this paper, unless otherwise 
stated or inferred.) The  second part of (2.2) has beenused; this explainsthe absence of Cfrom 
the above equations. The  linear terms of these equations have all been written out, and 
the non-linear terms have been denoted by H ,  I ,  J ,  K,  L,  N ,  P. In  the linear, or (Is), 
approximations the latter are all zero, and in the (ps)  approximation ( p  2) they are all 
determined from solutions of lower approximations. 

T o  derive the formal solution of (Al)  to (A7) we first integrate (Al) :  

F = - t J r H d r + q ( 8 , u )  (-W 
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where y is a function of integration. We next rewrite (A6) as 

On integration with respect to Y this becomes 

r(G,+GcotO) = r 2 D l +  ~ { r a ( N - 2 F ~ 4 ) + ( F ~ z + F , c o t 8 ) } d r + ~ ( 8 , u )  (A9) 

where x is another function of integration. Differentiating this with respect to U and 
eliminating G between the result and (A4), we obtain the pseudo wave equation 

(The left-hand side differs from the D’Alembertian of D in Bondi coordinates only in the 
sign of the term 2r-lD4.) 

T o  find G we multiply (A9) by sin 8 and integrate with respect to 8: 

G = Y-I  1 F, d r + r - l  cosec 8 1 sin 8 [ 1 r 2 ( N - 2 F l 4 )  dr+r2Dl+x]  d8 

+v(r ,  U) cosec 8 (Al l )  

where v is a function of integration. Finally, multiplying (A5) by Y sin2 8 and integrating 
first with respect to Y and then with respect to 8 leads to 

B = cosec’ 8 j sin2 6 [ - 1 {rL + 2r-l (F2 -G)) dr + F,  -G -rGl] d6’ 

+ 7 ( ~ ,  U) cosecz 8 +&?, U) (-412) 

7) P being two additional functions of integration, completing a total of five. 
The  formal solution of any (ps) approximation is made up of D satisfying the in- 

homogeneous pseudo wave equation (A10) and F,  G, B given by (AS), (Al l ) ,  (A12). 
The  five functions of integration appearing in this solution must be chosen to meet two 
requirements: (i) that the (ps)  metric be Galilean at spatial infinity, (ii) that it be non- 
singular on the rotation axis Ox (except at 0). A sufficient condition for the satisfaction 
of the second requirement is that 

E cosec2 0, C cosec2 0, D, F ,  G cosec B be of class C2 near sin 0 = 0. (A13) 

Whenever the above solution of (Al) to (A7) is used it should be substituted back into the 
(ps)  field equations to determine whether any further restrictions are to be imposed on the 
five functions of integration. 

Of the non-linear approximations we are concerned mainly with the (24) approximation; 
we present below tables 1 and 2 giving the non-linear terms H ,  I ,  J, K, L,  N, P for the 
quadrupole-quadrupole and m0nopole-2~-poIe contributions of this approximation. I n  
these tables, s = sin 8, c = cos 8, P, is the Legendre polynomial of order 4, S, is given by 
(7.10) (s = 4) and a prime denotes differentiation with respect to the argument U. 
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Table 1. Non-linear terms in (24) quadrupole-quadrupole approximation 

4 
2 2  2 2 2  

+rb6{(  -15s' +Ys4)hh" + 1 2 ~ ~ ~ ~ h " }  +y-" (32s2  --s4)hh' 

+ Y - *(?s2 - 1 5s4) hZ 
2 

( 2 4 )  2 2  2 2  2 

P = - T - ~ s ~ c ~ ~ " ' + Y - ~ {  -s3ch'h"+( -4sc+8s3c)h2} 
9 

2 2  2 2  2 2  

+ ~ - ~ { - i ~ ~ c h h " ' + (  - 1 2 s c f ~ ~ ~ ~ ~ c ) h ' h } + ~ - ~ { (  -24sc+42s3c)hh 
2 2 2  2 + ( 1 6 s ~  -23s3c)h"} +Y -7(20sc -lzLs3c)hh' + ~ - ~ ( 9 s c  -22zs3~)h2 

Table 2. Non-linear terms in (24) m0nopole--2~-pole approximation 

( 2 4 )  4 4 4 4 

K = P 4 ( 2  v y  -4h'V+%,%-6h+24~-7h'+30r-8h)  
P 

( 2 4 )  4 4 4 4 

6 h  + 6 ~ - ~ h '  + 9 ~ - ' h ) -  p = p 4 , 2 (-2- 3aY -4hIV+&- 
P 
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Appendix 2. Substitution in pseudo-wave equations 

to (8.2). 
We give here the steps leading from (7.3) to (7.4) and those leading from (8.1) and (7.3) 

From (7.3) we have after a simple calculation 
O’D = PS[{2(s+ 1)P-I  as-l-+rs P } ( Y - ~ - ~ A )  

-2((s -1)yS-I a s - 2 + p s  as - l ) (y-S-3A 4)1, s 2 2 
which can be written as 

O’D = Ps[{(s+2)~S-1 as-’ + ( s r S - l  as-1 + r s  8s)}(~-s-3A) 

-2Y((s - i ) rs-2 a s - 2  + r S - l  as-1)(r-s-3A4)], s 2. (A141 

(A151 

By virtue of the identity 
{(n+ 1 ) P  P+P+1 a n + l ) ( + J )  = y n  a n + 1 J ,  n 2 0 

( J  = J(Y, ...)), verifiable by induction or by the Leibniz theorem, (A14) yields 
O’D = Ps~S-1{(~+2)  as-’(r-s-3A) + a s ( ~ - s - 2 A )  -2 8 ” ’ ( ~ - ~ - ~ A 4 ) )  

pSys-1 a s - 1  {( s f  Z ) Y - ~ - ~ A + ( Y - ~ - ~ A ) ~  - Z Y - ’ - ~ A ~ ) ,  s 2 2 
giving (7.4). 

The  substitution (7.3) in (8.1) therefore leads to 

as - l{y - s -2 (Al  -2A4)} = y-2s-3;. 

Integrating this s- 1 times with respect to Y we have 

( - 1)“s + 3)! i ( u )  (z - 2 3  A = - 
(2s+2)! Y2 

(-416) 

omitting the functions of integration, which can easily be shown to yield a contribution in 
D non-Galilean at spatial infinity. Introducing in (A17) the substitution P = u+2r, C = U 

we obtain 

(2s)  

aA ( - 1)”(s + 3)! hs(G) 
( A W  _ -  -_.- - 

ail (2s + 2)! (Y -G)2. 

On  integration with respect to zi (A18) gives 

( - l p ( s + 3 ) !  S; i(f) de 
A =  + & f )  (2s + Z)! - (T -f)2 

($(i) being a function of integration), which yields (8.2). 
Appendix 3. The advanced 2”-pole wave solution 

axisymmetric system with sth moment (7.11). 

(7.11), which has been obtained in BR: 

We show here that (7.9) is the advanced ZS-pole wave solution for an isolated coherent 

Let us first write down the retarded ZS-pole wave (s 2 2) involving the sth moment 

(1s) (IS) S + l  

B =  -c= - 
(s -1)s(s f l)(s + 2) 

I 
(,419) 
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where 

(A201 
2S-n+l(s+2)! (s+n -l)! 
(2s)! ( E +  I)! ( s  -n+ l)! 

b n =  - (Z = 1 , 2 , 3 ,  ..., s + l )  

S S 

h(n, = ( $ 1 )  ( A 2 l )  

and S, is given by (7.10). This corresponds to the retarded Bondi metric (2.2) for which the 
Schwarzschild solution for a central mass m is 

ds2 = - - ~ ~ ( d 8 ~  + sin2 8 d+2) + (1 -2mr-I) du2 +2 dv du. (A22) 

The advanced 2S-pole wave (s 2) involving the sth moment (7.11) can be calculated in a 
manner similar to that used in calculating the retarded 2S-pole wave (A19). Suppose that 
we use the advanced Bondi metric 

C = B-I (A23) 

in which B, ..., G are functions of r ,  8, v only, v = t + r  = u+2r  (advanced time) is the 
time-like coordinate, and for which the Schwarzschild solution for a central mass m is 

ds2 = -r2(B d P  + C sin2 8 d+2) + D dv2 + 2 F  dr dv + 21.G d8 dc, 

ds2 = + sin2 8 d+2) + (1 -2mr-I) dv2 -2 dv do. (A24) 

Then, analogous to (A19), (A20), (A21) with U replaced by v and with several changes of 
sign, the advanced 2S-pole wave for s > 2 turns out to be 

S + l  

(s -1)s(s+ l)(s+2) n = 3  

(1s)  (1s)  ss B =  - C =  -___ (2b1v-11z(S)+ 2 (n -2)(n+ l)bnr- 

n = l  ) ('425) 

\-- ,  

G =  +I )}  

where 
( -2)S-n+1(s+2)! (s+n -l)! , , .  b = - 2  ' 

(2s)! (72 + l)! (s -n + l)! 
( n  = 1 , 2 , 3 ,  e , . ,  s+1) 

S S 

(A27) h (n ,  = h(n, ( 1. 
The advanced solution (7.9) of the linear approximation corresponds to the retarded 

Bondi metric (2.2), and expanded by means of the Leibniz theorem it becomes 

n = 3  

(IS) 
F = O  

I (A28) 
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O3 (IS) 
Y = r* + 2 mas R ( r* ,  e*, U*) 

0 = e*+ 2 masp(r*,  e*, v*) 

sb = 4* 

\ 

s = 2  

(IS) 

S = 2  
) 

I m 
(1s) 

v = E* -4nz In Y* + 2 inas 6 (Y*) e*,  v*) 
s = 2  

(1 S )  (1 S )  (1s) 
in which R(Y,  8, e) ,  P(Y, 8, E ) ,  S(r, 8, U )  are given, for s 2 2, by 

I n = l  

A straightforward calculation reveals that this transformation brings the retarded Bondi 
metric (2.2)) with its linear approximation comprising the Schwarzschild solution (A22) 
and the advanced solutions (A28) (s = 2, 3 ,4 ,  ...) of the linearized field equations, into 
the advanced Bondi metric (A23), with its linear approximation comprising the Schwarz- 
schild solution (A24) and the advanced ZS-pole wave solutions (A25) (s = 2, 3 ,4 ,  ...). This 
is provided the second relation of (7.11) is assumed. Hence we have established that for 
each s 2 2 (A28), and consequently (7.9), constitute the advanced ZS-pole wave for 
the axisymmetric system with sth moment (7.11). 
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